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Problem One: Binary Search Tree Warmup!

Binary search trees have a ton of uses and fun properties. To get you warmed up with them, try working
through the following problems.

First, draw three different binary search trees made from the numbers 1, 2, 3, 4, 5, 6, 7, 8, and 9. What
are the heights of each of the trees you drew? What’s the tallest BST you can make from those numbers?
How do you know it’s as tall as possible? What’s the shortest BST you can make from those numbers?
How do you know it’s as short as possible?

Take one of your BSTs. Trace through the logic to insert the number 10 into that tree. Then insert 3½.
What do your trees look like?

Problem Two: Walking Through the Trees

Write iterative functions to search a BST for a value and to insert a new value into a BST. Then compare
what you wrote to the recursive implementations of those functions. Which ones seem cleaner?

Problem Three: The Ultimate and Penultimate Values

Write a function

Node* biggestNodeIn(Node* root);

that takes as input a pointer to the root of a (nonempty) binary search tree, then returns a pointer to the
node containing the largest value in the BST. What is the runtime of your function if the tree is balanced?
If it’s imbalanced? Then, write a function

Node* secondBiggestNodeIn(Node* root);

that takes as input a pointer to the root of a BST containing at least two nodes, then returns a pointer to
the node containing the second-largest value in the BST. Then answer the same runtime questions posed
in the first part of this problem.

Fun Fact: This first algorithm is how the Set<T>::first() function works.

Problem Four: A Problem of Great Depth and Complexity

Write a function

int heightOf(Node* root);

that returns the height of the given tree. By convention, an empty tree has height -1. Then talk about the
big-O time complexity of your solution.
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Problem Five: Order Statistic Trees

An order statistic tree is a binary search tree where each node is augmented with the number of nodes in
its left subtree.  For example, here is a simple order statistic tree:

Suppose that you have the following struct representing a node in an order statistic tree:

struct Node {
int value;
int leftSubtreeSize;
Node* left;
Node* right;

};

Write a function

Node* kthNodeIn(Node* root, int k);

that accepts as input a pointer to the root of the order statistic tree, along with a number k, then returns a
pointer to the kth-smallest node in the tree (zero-indexed). If k is negative or at least as large as the num-
ber of nodes in the tree, your function should return nullptr as a sentinel. Then, analyze the time com-
plexity of your solution.

Problem Six: Custom Comparators

In Assignment 4, you saw the following struct, which represents a voting state:

struct State {
    string name;        // The name of the state
    int electoralVotes; // How many electors it has
    int popularVotes;   // The number of people in that state who voted
};

In lecture, you saw how to overload the < operator to make it possible to store your own custom types as
keys in a Map and as values in a Set. Why was it necessary to do this? What four rules must your function
operator< obey? Based on that, go and write an operator< for the State type.
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Problem Seven: Freeing Trees Efficiently

In lecture, we saw that you can use the following recursive function to deallocate all the memory used by
a binary search tree:

void freeTree(Node* root) {     
    if (root == nullptr) return;
    freeTree(root->left);       
    freeTree(root->right);      
    delete root;                
}                               

(What kind of tree traversal is this?) The problem with this code is that if you have a highly degenerate
tree, say, one that’s essentially a gigantic linked list, the recursive depth can get pretty high, so high in fact
that it can cause a stack overflow for a sufficiently large tree.

Here’s another algorithm you can use to free all the nodes in a tree in O(n) time, using no recursion at all.
This algorithm, which I first heard from a friend who now works at a self-driving car company, is based
on the idea of tree rotations. A tree rotation is a way of reorganizing the nodes in a binary search tree that
changes the tree’s shape, but maintains the fact that it’s still a binary search tree. There are two kinds of
rotations, left rotations and right rotations, which are illustrated here:

Here’s the algorithm for deleting all the nodes in the tree. First, imagine the root node has no left child. In
that case, we can just deallocate the root and then proceed to clean up the right subtree. Otherwise, the
root has a left child. So let’s do a single right rotation, moving more of the nodes in to the right subtree,
and repeat. Eventually, we’ll munch up all of the nodes in the BST, and since there’s no recursion involved
here, we use only O(1) auxiliary space. Impressively, this still runs in time O(n).

Implement this algorithm.

Problem Eight: Counting BSTs

Write a function

int numBSTsOfSize(int n);

that takes as input a number n, then returns the number of differently-shaped binary search trees you can
make out of n elements.
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Problem Nine: Building BSTs Directly

Our first lecture on binary search trees included a mystery function  buildBSTFrom that, given a set of
numbers, produced a BST out of those numbers. This question explores how that function works.

Imagine that you have a sorted list of n numbers stored in a Vector. Write a function

Node* buildBSTFrom(const Vector<int>& elems);

that constructs and returns a balanced binary search tree containing the elements stored in the list given
by elems. See if you can find a way to get it to run in time O(n), where n is the number of elements in the
Vector.

Problem Ten: Checking BST Validity

You are given a pointer to a Node that is the root of some type of binary tree.
However, you are not sure whether or not it is a binary  search tree. That is,
you might get a tree like the one shown to the right, which is a binary tree but
not a binary search tree.  Write a function

bool isBST(Node* root);

that, given a pointer to the root of a tree, determines whether or not the tree is a legal binary search tree.
You can assume that what you’re getting as input is actually a tree, so, for example, you won’t have a node
that has multiple pointers into it, no node will point at itself, etc.

As a hint, think back to our recursive definition of what a binary search tree is. If you have a node in a bi-
nary tree, what properties must be true of its left and right subtrees for the overall tree to be a binary
search tree? Consider writing a helper function that hands back all the relevant information you’ll need in
order to answer this question. 

Problem Eleven: Deleting from a BST

We didn’t talk about how to delete nodes out of a BST, and that’s for a good reason – it’s surprisingly
challenging! Let’s suppose you want to delete a node out of a BST. There are three cases to consider:

1. The node is a leaf. In that case, it’s really easy to delete, so we
just go and delete it.

2. The node has exactly one child. In that case, we delete the
node and  “replace”  it  with  that  one  child  by  updating  the
node’s parent so that it points directly at the single child.

3. The node has two children. In that case, we do the following.
Suppose we want to delete the node containing  x. Find the
node with the largest value in x’s left subtree. Copy the value
from that node and overwrite the value x. Then, go and delete
that new node instead of x.

Trace through this algorithm by hand on the tree to the left, deleting C, then E, then N, then M. Then, im-
plement a function

void removeFrom(Node*& root, int value);

that removes the specified value from the given BST, if that value exists. Finally, discuss the runtime of
the algorithm you implemented as a function of the height of the tree.
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